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ABSTRACT

Diagnosis and analysis techniques for linear
systems have been Jdeveloped and refined to a high
degree of precision. In contrast, techniques for
the analysis of data from nonlinear systems are in

the early sticges of development. This paper
describes a time series technique for the
analysis of data f{r~m nonlinear =systems, The

input and response time aseries resulting from
axcitation of the nonlinear system are embedded in

1 n-ate 3space. The torm ot the embedding in
primived usinag | cal canonical variate analynias
widd singular value Jdecemposition techniques,  From

the state space model, fulure systoem responses ate
syt imated. The expected learee ot predictability
f the 3system i3 investigated using the ntate
‘ransition matrix, The degree of nonlinearity
present is quantitie”d uslng the geometry of the
‘tansfer function poles in the 2 plane. Examples
f application 'o a linear single-deqgree-nt-

tieol.m system, i “dingle=dagreo=ot -tree g m
ufting Sacillator, and linear and noen!inear
*hree doqree of frocdom cncillators are preasonted,
NOMENCLATURE
' tnaponne { |"‘|‘|"||"Y-
S ) mampand dnpat v ime ey e oo an expett iment al
syntom,
(ay o unswariate c0omalt ivarjate) .

W) samp led peetpe neve e e peey U o an
cperr teent gl oyttt om,
vnay be gnivariate oot ivariate)



T sample interval for digitally sampled data.

3 number of lags used in embeduing the
response time series.

1 number of lags used in embedding the input
time series.

ai coefficients of the ith delayed input term
in a linear time series model.

bi ccefficients of the ith delayed response
term in a linear time series model.

W, angular natural frequency for a linear
oscillator.

5 damping ratio for a linear osciilator.

a coefficient of the anti-symmetric quadratic
term for base excited nonlinear oscillator.

A coefficient of the symmetric quadratic term

for base excited nonlinear oscillator.

y-" input acceleration to the base of the
single degree of freedom oscillator.

y" response acceleration for the single degree
of freeaom base excited oscillator.

INTRODUCTION

Consider the system described in Figure 1. This
unknown system is excited by an input time series
u(t), which in the context of mechanical vibrating
systems, is typically a measured force cor
acceleraton, anua responds with a response time
series yi.t), typically acceleration or strain.
The input and response time series, shown hure as
uraivariate, may in general be multivariate,
monsisting of multiple inputs and resp.nses.

Input u(t) Response y(t)

J UNRNOWN >

SYSTEM
Figure 1
Conceptual Input-Output Systen
nothia fiqura the syatem 1 Yiewed an a "hlack
Lox"™ , etined Ly 1ta reaponse y(t) to

an input ' ime sepjes u(t) .,
oo ayatemm in linear, the analysia terhniquen
typrioally une tho Fouprier o tranaboamat ion to bt aan
Sapnt oand reaponne gt a o in the frequency  Slomain,
Froeqmency  Lmain cdarta i thon aned Yo previde
Yo nne powed Spectra andd trannteg tunet ion
Satormart oo, Prvaka ot he  tprannton tanet o

cdi cate geaonant freopeh cgeey, o Mmoo, [T
y iyt om, vl preew e o v nder gl e et
LT Y e epnt o dynamypeny, v ier tochnnpguoen e



very effective for the analysis of linear systems
as they provide a relatively simple means of
characterizing a aystem from experimentally
derived test data.

For a nonlinear system, the use of Fourier
transformation techniques, coupled with random
excitation, produces the best fit linear estimate
of the systems behavior.

Fitting a linear model to a dynamic system is
appropriate if the system's behavior is nearly
linear. For strongly nonlinear systems, however,
the transfer function does a poor job of modelling
the real system, either in terms of the effective
number of degrees of freedom or in terms of
prediction of the system's behavior. In fact,
nonlinear systems behave in a manner fundamentally
different and more complex than do linear systems.
The principle of superposition holds for linear
3yatems, making it easy to separate transient and
steady 9tate system vresgponses. For nonlinear
systems, however, superposition does not hold, 30
the simplification of a response into transient
and steady state components cannot be made in the
same manner. Further, nonlinear systems are
frequency creative. A linear system excited by a
frequency f, responds at the same frequency f,, 1In
contrast, nonlinear systems readily transafer
enargy between frequencies. An example of this
energy transfer is shown in Figure 2, where two
examples of the response wavetowims produced by a
strongly nonlinear, mechanical oscillator (two
well potential systems) -iriven DY a4 s51le Wdave ate
illustrated.
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Figure 2

Response of a Single Dagree of Freedom Two-
Well-Potential System

Even though, in two separate cases, the system is

excited by a sine wave, the response waveforms

illustrated by the solid and dotted lines are not

periodic. In fact this is an example of chaotic
Lehavior.,

Note that the responae ot thia asystem is nct even
reriodic. The voncept of chaotic behavior has
recently been applied to nonlinear systems. In a
haotle system, o hiigh Jdogree ot sensitivity e
*he initial conditiovnag exi13ts, 30 that
infinitesimal changes in the system state lead, in
!inite time, to Jdifferent time series behaviors.
Many strongly nonlinear savatems are chaotic, even
wheit exciled by sinusciaal inpurs'., Figure 3
illusrrates the «lfect. ot a4 one percent

perturbarion in thoe atare of a  chaotic,
vinuso daily oxcited, atting oacillator, Tho
fetturbed and unpertuibed 1esponses Jdlverge with
Yime, producing two fatterent time nories
1maponses., The copncept ot cbaotic behavior an
it ivity ta dindvial o conditione alao cccurn in

yarama draven by randem dnpuat o,
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Deviation of Responses For A 1% Difference
in States for A Strongly Nonlinear Duffing
Osclillator.

Note the gradual deviation between the solid and
dashed waveforms until two completely uncorrelated
time resporses occur.

There cre several ways to approach tha problem of
‘maracterizing a noenlinear systern from test lata,
The tirenuency responge tunction approach may !e
cxlenried Yo noniitear cystems through the use o
Volterra or Weiner Jeriesf(3) ., These apptoaches
wxtend the transter tunction concept to highe:
.tder apectra, where the reaponse at a frequency
t. i3 produced by a aut ot! frequencies which sum
y f.o.

‘nour approach we analyze nonlinear systems by
st the  dinput and  JTeAponas time seties o
forave a aet ot M"locally linear™ , but qlobally
honlinear, modely «f thoe aystam behavior, Thia
! rmuiation allows ua 1o predict the long term
tesponae ot the ayatom (for pgonchaot ie ayatoems)
el the shart team roeaponne tor aystoma which are
ety Hondineatity i dqetected by obnaerving
e o the Sacal Toehavieg an we osuceonnivoely
woededl they time e ges posponse g i toront
St i U ho o gt e,



MODEL TFORMULATION.

Consider tha system which is illustrated in Figure
1., The input and response time series are sampled
with sample interval T. The response time series
forms an image of the state of the system. This
image may be reconstructed using delay coordinates
in place of the unobserved state variables?. In
a delay coordinate formulation the future response
of the aystem is a function of the past responses
and current and delayed inputs as shown in
Equation 1:

yt)= £{ y(t-1), y(t-20), ... y(t=jT), u(t),
u(t-t), u(t-21t),... ul{t=-11)} (1)

For a linear system this formulation is a linear
one and we write:

vit)= b y(t=T)+b y(t=21T)+... +b:u(t=-3T) + a,
+ta:u(t=-T) +au(t-2t) +...+ a.u(t-1lt) (2)

The formulation of Equation 2 1is, of course, the
well known ARMA, or autoregressive moving average
model which is often used in the time 3eries
modelling of linear systems. A tfundamental
problem in applying the ARMA technique to a
nonlinear system is in the determination of the
proper functional torm to use in Equation 1,
53ome natural choices ot functional forms include
polynomials, radial Dbasis functions, and
splines’ * ', The problem nf titting a functicu to
Eiquation 1 is easentially cne ot surtface fitting,
43 il.ustrated in Figure 4, where, for purposes ot
illuatration, the surrent yi(t) i3 depicted as a
tanerioon ot thoe rwe o vartabled ad(t) and vr-n),
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Figure ¢
A Simplified Illustration of the Solution
of Equation 1 as a Problem in Surface
Fitting.
Here the current y(t) is depicted as a function
of the input, u(t), and the past response, y(t-t).
The surface fitting may be accomplished globally
as shown by the shaded entire surface, or locally,
as shown by the clear elliptical region,

Jne efficient means ¢t fitting the 3surface of
“igqure 4 is through the use of local techniques.
.nly points in the neighborhood ol the past values
*r which prediction i3 .desirerd are used to 3olve
e model. Many {unctional torms may be used tor
.cal surface fitting, including the linear form
- FEquatlon 2, a3 long a3 the function |1
reapplied in each region tor which prediction ina
lesired. We have used globa. polynomials, global
radial basis functions, and local linear models in
attempling to model nonlinear systems. Of these
:tmn, the best re¢sults were ohtained using lacal
LLheatr models.

wmbedding Techniquen
it image of the atato apace in equationn | and 2
o tormod inoa space whore each coordinate ia one

t the delayed a(t) 1 y(@) terma. The dimennion
¢t rhe gpace i oftectavely vl o the namber ot
Lapnt rermy plun the nambeg o aoaponde termn,
p dmibly plua a o onatant toam, Thin may Lo g veory
St e ren Tapronent at i-n t the aystem at ato,
Sithoor himontaion o caraer Y han e o pedgui el o

cat e a0 himenad-n amplies snetticront 0ty ineg ot



the function which relates the past to the
future. Two approaches have been taken to
alleviate this dimensionality problem, Singular
Value Decomposition? and Canonical Variate
Analysisi®, We have used both of these
approaches, and both essentially provide an
estimate of the number of effective states in the
systems by using coordinates which are formed from
a linear combination of the delay coordinates. The
singular value decomposition techrique is applied
primarily to autonomous systems (systems modelled
using only the response signal), and the canonical
variate analysis technique to driven systems, To
Aate, the most effective approach we have found
for driven systems uses the local canonical
variate analysis technique, the details of which
are described in the references:!.

Iterative Prediction

The prediction of a given value y(t) from past
values of y(t) and u(t) is useful but for many
purposes incomplete, as we often desire to predict
future response waveforms consisting of many
individual sample intervals. To achieve this form
of prediction we iteratively predict the response,
using successive y(t)'s as past values of the
response as they are computed Equations 3
illustrate the iterative prediction process.

yltog)= f{ y(to=0), y({tyo-2T), ... y(to=-3iv, u(tn),
u(t)=1), u(tg-2t),... u{ty=-171)} (3a)
ylt +T)= £{ y(t>x), y(c-=-T), ... yltp-(3-1)1n),
ule-+4T), u(t.), u(t-_T),... alts=(l-1)T)} (3b)

#irst cur model i35 applied *o scolve for Yty 43
shown in Eguation Ja. The y(t:.) computed from
(3a) then serves an an input to a succeer.ing model
in (3b), where 'he computed value of y(t,+T)
serves as the input to a second iteration which
3olves for y(t.+271). These "“iterative"
predictions are repeated many times for
succesively increasing T values to obtain the

it Lalel  response wavoeshape  over Dol L ime
jeriods. All ot the predictions ashown i1n this
aper are itereted pradi:tion3s over the time ranqge
indicated in the tigureas, An iterated prediction
i demanding test of a4 model since it requires
ngiatent ]y acourate paedict iona, nf courne, A
Lirocty compatison of the teaponas and the itoraced
predic s ien omay show that Che predictd and measuled
Wavelarma diverqoe it t he ayatem  bohavesy

ot oally, o anct her meamine of o model validity,
dochoa Y he powen Aty am, munst e ayindd in
Janrtanced o chaot e bolpavger .



A summary of the complete algorithm for
characterization and response prediction for
nonlinear systems is shown in Figure 5.

Sample Input and
Response Time #Serias

Fora Preliminary
Embedding

Select a Point at
Time t0 for Which
Predictien is Desired

rind Weighbors From Use the Predicted
Training Dats Point (s) as the Laat
Heasurement Value

Use CVA to Determine
Approzimate Rank

Fic a Lnnlr Model Go Forward One
Of This Raok for Time step

This Poiat

Compute And BSave
Pole Lecations

Check for Local Divergenace
of Trajectories (Chaos)

:

frediot the Value of
The Next Measurement (a).

[]

Figure S
Algorithm for Response Prediction and
Characterization of a Nonlinear System
This algorithm uses the input time series, assumed
rttewno At all times, and the response time seriwy,
which i3 known only Juring a training period.



We have implemented the algorithm in Matlab ( a
higher level matrix analysis language) and also,
in some forms, in C. The steps in this algorithm
are followed sequentially for all of the examples
used in this paper.

System Characterization

The steps shown in Figure 5 define an algorithm
for the prediction of responses of nonlinear
systems using a local linear model. Since our
model is “locally" linear, at each time t: we have
an estimate of the transfer function in the form
of Equation 4.

he = (ap +ayz™! +az7™2 + . . . + as z279)/( by +b;z"-
byz=2 +.. bz~ (4)

As we 3sweep through the time series response for
the system, successively computing estimates of
the current response, we have, at each time t, an

estimate of -he transfer functicn. If the system
is linear, this estimate is consistent at every
time step. For a nonlinear system, in contrast,

the effective transfer function varies with the
time( fundamertally with the differing states) at
which the transfer function is computed. We chose
to characterize the transfer function by the
location of the transfer function poles in the =z
plane. We will observe the location of these¢ poles
in several 1linear and nonlinear systems.

EXAMPLES .

5ingle Degree of Frocdom Linear Oscillator

A single degree ~f freedom linear, force excited,
2gscillator i3 shown in Figure 6. The oscillator

has a resonant frequency of f,=1 Hz. and {=2%
damping.

/10



Figure 6a
Linear, Force Excited Single Degree of
Freedom 0Oscillator.

The oscillator is excited by band limited random
noise and 2000 samples of the input and response
waveforms used as training data for aystem

characterization. Eight input and eight response
lags are used in the embedding and 1local CvA
applied. The number of asignificant singul:

values indicates that a state rank of three i.
appropriate. The local linear CVA model is then
sapplied Lo predict 200 samples into the future as
shown in Figure 6b.

/|
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Figure 6Db.

Measured and Predicted Responses for the
Single Degxee of Freedom Linear Oscillator
Excited by Band Linited Randm Nolae.
The measured waveZorm (solid) and predicted

waveform{dashed) can scarcely be distinguished.

Accurate -terated predicticns are obtained for the
entire sample interval, indicating that our model
is wvalid. As each sample :3 predicted we can
‘rserve the Fole L1ccations ~t the transfer
functicn in the ® plane. These peole locations are
3ncown in Figure o

2
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Figure 6c
Pole Locations fo- the Linear Osacillator.
Mote the tight clustering of the poles in two
discrete, conjugate loca-ionsa, indicating that a
single resonant frequency is present, as expected.

Tne tight clustering of the two poles shown in
Figure 6c indicates that the aystem has a single,
consistent, resonant frequency. The implication
ia, as expected, that we are observing data from a

L.nar system,
Nonlinear Duffing vscilliator

W onow o almuiate the Duattina-iike -cscillator ot
Praation Loanng Fiasire 7, 31101 ah analeq ocroemputor,

w20y T,y ) s (y sy ) v (y-y )t b
Bly=-y ) ly-yol=0 (%)
Hore: Typically rhe Dutting oscillator contains a
ubic stiffness term, Here, for easea ot
timulation, aymmet oyt and  anti{-aymmet: i -
padddrat 1t orma are unedg,

([} LA | & S VIRV

NETSY

= 00

's.. <0

WM ot tejerat on ot Y he bane ot P syt om,

?r S orenpentie o cCceerat on

1o



Mz yl"

A

YOH
M1l
Figure 7
Base Excited Nonlinear Duffing-Like
Oscillator

In contrast to the linear oscillator this system
is excited using a base accelieration.

The oscillator is excited using a Genrad 2514
random vibration controller and input and response
signals digitized using a Masscomp 5520 computer
system. 2000 points ot the input and response
signals are used in the training data set and
iocal linear CVA applied. A state rank of three is

intitated by the nanber cF sianificant singulan
values. The mode: 13 used to predict the time
1esponse for a pericd of 200 samples. Measurad
tonponae and  iterated prediction are shown in

Miqure BHa.
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Measured and Iterated Pradictions for the
Response of the Duffing Oscillator.
The measured response (solid curve) and the
Iterated prediction (Dashed curve) compare
favorably for this form of nonlinear model, even

for an lterated predic! ion.
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Figure 8Db.
Fole Locations Observed for the Duffing-
Like Oscillator.

Unlike the linear system, the pole Jocations are
diffuse, indicating that rthe nystem's etfective
resonant frequency shift with time, or more
accurately, with the instantaneous state ot the
system, Note the that the model i{s locally
unstable, as indicated by poles locally outside
the unit circle.

The model, while 1ot quite as 4accurate as the
model ftor the linear system, Jdoes a r1espectable
bt predicting che rtoaponas of this atrongly
aonlinear derlial o ver the pange ot samplen
et rated, W | Fa iow the aogulta L
vinhear model, which tailed 't predict oven the
dqeneral waveshape of the rosponne slluntratoed
tisre,  Pole locat i ns tor thia syatem ar1e shown in
Figure #h, Unlike the lincar nyntem, the pole
lheations vary with where we are in the time
derien, indicating the predsnce ol aiqnificant
noenlinearity,

"irea | jroves of Fpesercdeqn e Vlat on

Yoodlaustrate the gapplioaten ot thin typoe ot

sl mult b dergree ot st poodom oyt em,  we
Mot Vo syt L tust ratend Sn Figqure gy, Huvpoy oy
Tl rman, Thibewe spnateg cystom i o oxeatod with

tant o timaitod o pandem o oane . Weo o two o cannnag
Cane b gl stitInesson el clampangs Ginear oandd
copr b e DT AL paramet o dentieal to Cane
Voo e p b Y e s et e eatte o aned

Padotiovar o wair b s e T rpesat oy Wty o



relative displacement retween masses 2 and 3 is
negative. Initially k10=k12=k13=2n(1.0) and all
damping coefficients

cl0=cl2=cl3=2fwn =2(.02)2K(1.0).

| O S ya"

c23 :l:j K23
M2

---'--'qu

cl2 |=E| K12

M1l

------'Yl"

Cl0 tﬁj K10

MO

yoll

CASE I: K12 LINEAR
CASE II: K12 BILINEAR

Figure 9a.
Diagram of a Three Degree of Freadom
Oscillator.
Hote ot hat the csciliater may be dincar K12
ifierar) o ononlinear (Kl bilinear) as indicatoed,
The  dnput o sianad i the o "
Foesponges are the accelerationa y:", ", and y ",

ase accoleration vy

I each case we apply the local linear CVA model
* 5 4000 training  lata pointa from the nyatem,
whi-h o<onasiata f the input time naerlea and the
toraponse accelerat iona oo omanaen 1, S, and 1, An in
e catte fap R Jinear adnalesdergroo-of -t roadam

iaaator, moanutred el preddict et tenponsen
cirtually owve lay, The pele Doeeationns 1o the

Citmar ayatem lie oan e o diarinet copn hugato qarionn,
v o shown in Figure thy theroe o thteo padra o
oy loxd gt e pele ooty o, dinbicating thn
A ERITTY IFRTTIES B IS [N IFRTER (RN IR PR I Sansiatont o o posonat!
Prerpmionecea, Thoeao pole Cacat poenm o ar e eXperet o
romoan o analytarcal o analyran ot Y he it forent jal
copiat s o gqovornneg the oyatem. Phe o oppenvaluea of
Che prtom gt ate vrannait s homatpax anedlbeate v he

P BT T fovprosee gt vl a ity o P he st gt
franttt onn b e P hnan ogqonvaluen g



plotted for the range of sample points considered.
The eigenvalues remain less than unity over the
entire range, 1indicating that the system 1is
predictable.
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Figure 9b.
Pole Locations, as Indicated From Measured
Response Data, for the Three Degree of
Freedom Linear Oscillator.

Note that three consistent resonant frequencien

#xist at locations which an analysia ot the system

trectioc s,
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Figure 94d.

Measured and Predicted Timea Series for a
Segment of The Response of Mass 3 for the
Nonlinear Case of Figure 9a.

Note the relatively good ccmparison between the
measured (solid line) and predicted (dashed line)

rasponses over thls time span,
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Figure JYe.
Pole Locations for the Nonlinear Oscillator
as Indicated by the Local Linear CVA Model.
"wo pode docat{ona are e lat ivoly inaennit jve to
hoe noniinearity, The thirtd pole lacat fon i1
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smeared into an ell.ptical range by the picsence
of the nonlinear satiffness k,;.
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Figure 9f

Real Part of the Largest Eigenvalue for The
Nonlinear 3 DOF State Transitlion Matrix
Note that the larcest eigenvalue now exceeds unity
locally in several regions.

We now consider the nonlinear case, illustrated in
tigures 9d 9e, anu 9. We apply local linear CVA
to 10,000 training data points. Measured and
predicted acceleration responses of mass 3 are
rompared in Fiqure 94 tor 200 data points outside
*he training inteival. The comparison, while nnt
a3 yooad as rhat «btained tor a4 linear nystem, ia
judged sutficiently accurate to indicate that the

model is valid. Pole locations for thias three
dayrtee of treedom nonlinear oacillator are 3shown
in Fligure 9Ye. In comparison to the linear

nscillator, two asets of pole locations remain
fairly consistent, but the location of the third
pola has changed into two poles Incated near 1he
.maginary axla, This aystem appeara to have tour
‘onhjugate pole locations but the atate rank of the
'tystem 13 aeven, uatoan in the linear cane,
Contequent ly we are olbmerving tho offects ot a
nonlinearity. Tho double pole  Jecation in
canadatent with two ntitfrneanen in location ke

The ahitt in the location of the double pole
inddicatea that thasy offoct ive resonant  troquency
4 tha ayatem varlea with tho sgyntom atatae,
ptelicating the preaonco of arguificant Iy nonl inesn
Yohavion, Analynia ot thoe ayatom indicatos ot hat
thoe  foubile poloa 0 mors aennr bt dvo Voo varit ionn i
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ki, than are the other poles, whose locations
change only minimally.

CONCLUSION

We have illustrated a method for the analysis of
nonlinear systems which makes use of a segment of
the input and response waveforms for the system
(training data) to build a system model. This
model provides, tlirough geometry of the pole
locations in the 2z plane, an estimate of the
degree of nonlinearity of the svstem. Future
time series responses of the system under study
are predicted. Further application of this model
formulation to a greater variety of nonlinear
systems is planned. Some features of the model
include:

1. Training data used must explore the same
regions of the state space a3 those for which
response prediction is desired. Extrapolation to
unexplored regions of the state space is limited.

2. Training point requirements will probably range
between thousands and hundreds of thousands of
points, depending on system complexity.

3. Multiple response measurements are desirable
when analyzing complex systems.

4. The number of significant singular values gives
an estimate of the state rank of the system.

s. Running time tor the algorithm is cvn the order
of 20 minutes for the systems illustrated using a
Sun Sparkstation, There are potential gains in
algorithmic efficiency which have not yet been
utilized.

6. The algorithm gives an indications of regions
~f the time 3eries where prediction may be
Jifficule.

7. Information theoretic criteria relating to the
mode 1 require further invest igation and
“larification, capecially in ‘dntewmininag t he best
meoran:t L smbet ling aned an cddetermining the numbet
ot data pointa required for training.

At ' his point the technique looky promising tor
the letection of nonllinearity in dynamic systemn
and tor the predictiocn f the time setiens response
(tor mon=chaotic 1saginnn) 1 the g1esponse
statiaticy (for chastic yegionn) . The une of thia
tochnigque i onot limitoed te data from mochanical
wrpliatora but o may e oappliod to o wide varjmy
4 ayatems ot low 1o modeprate abate papnk wherne
st st oand respenne 0oame oo groe o avai lable,
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